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A CHARACTERIZATION OF ALTERNATING GROUPS BY

THE SET OF ORDERS OF MAXIMAL ABELIAN SUBGROUPS

G. Chen UDC 512.542

Abstract: We prove that alternating groups with three prime graph components are uniquely deter-
mined by the set of orders of maximal abelian subgroups.
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It was first time under consideration in [1] how the orders of maximal abelian subgroups influence the
structure of the group. The following simple groups were proved to be uniquely determined by the set
of orders of maximal abelian subgroups: the k3 groups, An, n ≤ 10, Mathieu groups, Janko groups,
PSL(2, 2n), and Sz(22m+1).
Here we will prove that the alternating groups Ap with p and p−2 primes can be uniquely determined

from the set of orders of maximal abelian subgroups and give some subsets of the set of orders of maximal
abelian subgroups which can also determine the groups.
Definitions and notations: Γ(G) denotes the prime graph of G; t(Γ(G)) denotes the number of

prime graph components of G; πi, 1≤ i ≤ t(Γ(G)), denote the set of vertices of prime graph components
of G. If G is of even order then π1 always denotes the even prime graph component of G. We let πe(G)
denote the set of orders of elements of G, and π(G), the set of prime divisors of |G|. Let M(G) = {n =
|N | | N be a maximal abelian subgroup of G}. Let p be a prime; a, an integer; and pn ‖ a means pn | a
and pn+1 � a. Let m and n be positive numbers. We let (m,n) stand for the greatest common divisor
of m and n.
Assume that π1, π2, . . . , πt are all prime graph components of G. Then |G| = m1m2 . . .mt, where

π(mi) = πi, i = 1, 2, . . . , t. We call m1,m2, . . . ,mt the order components of G (see [2]). Using the
classification theorem of finite simple groups, as well as [3] and [4], we can list the order components of
finite simple groups with nonconnected prime graphs in Tables 1–4 of [2].

Lemma 1. If G is a finite group with more than one prime graph component then one of the
following holds:
(a) G is Frobenius or 2-Frobenius and the prime graph of G has exactly two prime graph components;
(b) G has a normal series H � K � G such that H and G/K are π1-groups and K/H is simple,

where π1 is the prime graph component containing 2, H is a nilpotent group, and |G/K| | |Aut(K/H)|.
Moreover, any odd order component of G is also an order component of K/H.

Proof. The lemma follows from the definition of order component, together with Theorem A and
Lemma 3 in [4].
By the definition of M(G), the following lemma is easy:

Lemma 2. For G and M assume M(G) =M(M). Then G and M have the same prime graphs.

Lemma 3. For G and M assume M(G) = M(M). If the prime graph of M has isolated points
and the Sylow subgroups corresponding to these primes are of prime order then the set of odd order
components of K/H in Lemma 1 is a subset of order components of G.
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Proof. By Lemmas 1 and 2, the odd components of the prime graph of K/H are some of those
of M . If the condition of the lemma holds, suppose that the prime graph of M has an isolated point p
and the p-Sylow subgroup of M is of order p, then the odd order components of K/H must be a power
of p, which is exactly the order of a Sylow subgroup. If the order of the related Sylow subgroup K/H is
not p then the latter contains an abelian subgroup of order p2, but the maximal abelian subgroup of G
with order a power of p is exactly p.

Lemma 4. An with n > 8 has a unique faithful modular 2 representation of least degree, this degree
n− 1 or n− 2 according as n is odd or even. These representations are realizable over GF (2) (see [5]).
Lemma 5. If p > 2 then An with n > 6 has a respectively 2 and 1 faithful modular p representation

of least degree, this degree n− 1 or n− 2 according as p � n or p | n. These representations are realizable
over GF (p) (see [6]).

Theorem 1. Assume that G is a finite group and M is an alternating group Ap, where p and p− 2
are primes. If M(G) =M(M) then G ∼=M .
Proof. By Lemma 2 G and M have the same prime graph components. Because M has exactly

three order components, we see that G has a normal series 1 � H � K � G such that K/H is simple
group with two odd order components equal to those of Ap, e.g., p and p − 2. Since the two odd order
components of Ap with p and p− 2 primes have difference 2, by the table of the order components in [2],
we infer that K/H may be one of: A2(4),

2E6(2), J3, Suz and Ap′ , where p
′ and p′ − 2 are primes.

If K/H = A2(4) then p = 7, M = A7, and |G/K| | 2. Since M(M) = {4, 12, 5, 7}, the order of the
center of Sylow subgroups of H divides 3 or 4. But these centers are normal in G, and so the result of
their order minus 1 should be divided by the product of odd order components, e.g. 35; a contradiction.
If K/H =2 E6(2) then p = 19, M = A19. Right now A19 has subgroups of order 55 and 5× 13, but

K/H has not. Therefore, the subgroups of order 55 and 5× 13 must lie in K. Hence, 5 | |H|. But A19
has a maximal abelian subgroup of order 53, which means that Z(H) is of order 5, 52, or 53. Obviously
Z(H) is normal in G, and so 17× 19 | |Z(G)| − 1; a contradiction. Therefore, H = 1, and

2E6(2) � G � Aut(2E6(2)).

Since M has an abelian subgroup of order 13× 5, G must have an abelian subgroup R of the same order,
e.g. 13×5. Hence, RK/K is of order 5, which implies that 5 | |Out(K)|; a contradiction for |Out(K)| = 6.
If K/H = J3 then p = 19, M = A19. Because 5 ‖ |J3| one has that 5 | |H|. Since the order of the

maximal abelian subgroup of A19 is 25, the order of the center W of the 5-Sylow subgroup of H is of
order ≤ 25. But W � G, which implies that 17× 19 | |W | − 1; a contradiction.
If K/H = Suz then p = 13, M = A13. If 3 | |H| then the order of the 3-Sylow subgroup of H is of

order 3i, where i = 1, 2, . . . , 5. Let S3 be the Sylow 3-subgroup of H. Since the odd order components
of G are 11 and 13; therefore, 11 × 13 divides |S3| − 1, which is impossible. Hence, 3 � |H|. Thus all
3-subgroups are isomorphic to those in K/H. Notice that K/H = Suz has an abelian subgroup of order
35, which implies that G has a subgroup of the same order. But M = A13 has no subgroup of order 3

5;
a contradiction.
By now, we proved that K/H = Ap′ , where p

′ and p′ − 2 are primes. So it is easy to see that
K/H = Ap. In case H �= 1 let Sr be the Sylow subgroup of H. Then Z(Sr) � G. Assume that K acts
on Z(Sr). We have that K/H acts faithfully on Z(Sr) since CK(Z(Sr)) = H. By Lemmas 4 and 5, this
means that

|Z(Sr)| ≥ p− 1.
By M(M) = M(G) we have |Z(Sr)| = p for p > 7, which implies that K/H is cyclic; a contradiction.
Therefore, H = 1, Ap ≤ G ≤ Sp. Since Ap has an abelian subgroup of order 2(p− 2) and Ap has not, we
see that G = Ap. For p = 5 or 7, by [1], we come to G =M .
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